Ta có; [tex]\left\{\begin{matrix} x(y+z)=x^2+2\\ y(x+z)=y^2+3\\ z(x+y)=z^2+4 \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x(y+z-x)=2\\ y(x+z-y)=3\\ z(x+y-z)=4 \end{matrix}\right.\Rightarrow \left\{\begin{matrix} y+z-x=\frac{2}{x}\\ x+z-y=\frac{3}{y}\\ x+y-z=\frac{4}{z} \end{matrix}\right.[/tex]
Lại có; [tex]\left\{\begin{matrix} x(y+z)=x^2+2\\ y(x+z)=y^2+3 \end{matrix}\right.\Rightarrow xz-yz=x^2-y^2-1\Rightarrow z(x-y)=(x-y)(x+y)-1\Rightarrow (x-y)(x+y-z)=1\Rightarrow x+y-z=\frac{1}{x-y} \Rightarrow \frac{1}{x-y}=\frac{4}{z} \Rightarrow z=4(x-y)[/tex]
Tương tự ta có: [TEX]y+z-x=\frac{2}{x}=\frac{1}{y-z} \Rightarrow x=2(y-z)[/TEX]
[TEX]x+z-y=\frac{3}{y}=\frac{2}{x-z} \Rightarrow 2y=3(x-z)[/TEX]
Từ đó ta có [TEX]x=10k,y=9k,z=4k[/TEX]
Thay vào phương trình đầu tiên ta có: [TEX]130k^2=100k^2+2 \Rightarrow k=\pm \sqrt{\frac{1}{15}} \Rightarrow x=...,y=...,z=...[/TEX]