

Giải hệ phương trình:
a, [tex]\left\{\begin{matrix} 3\left ( \sqrt{x} + \sqrt{y}\right ) = 4\sqrt{xy}& \\ xy = 9 & \end{matrix}\right.[/tex]
b, [tex]\left\{\begin{matrix} x - 3 = \sqrt{y}& \\ y - 3 = \sqrt{x} & \end{matrix}\right.[/tex]
c, [tex]\left\{\begin{matrix} xy + x + y = x^{2} - 2y^{2}& \\ x\sqrt{2y} - y\sqrt{x - 1} = 2x - 2y& \end{matrix}\right.[/tex]
a, [tex]\left\{\begin{matrix} 3\left ( \sqrt{x} + \sqrt{y}\right ) = 4\sqrt{xy}& \\ xy = 9 & \end{matrix}\right.[/tex]
b, [tex]\left\{\begin{matrix} x - 3 = \sqrt{y}& \\ y - 3 = \sqrt{x} & \end{matrix}\right.[/tex]
c, [tex]\left\{\begin{matrix} xy + x + y = x^{2} - 2y^{2}& \\ x\sqrt{2y} - y\sqrt{x - 1} = 2x - 2y& \end{matrix}\right.[/tex]