7) [tex]x^2+4xy+4x+8y+4y^2-5=0<=>4(x+2y-1)+(x+2y-1)(x+2y+1)=0=>x=-2y+1 \vee 5+x+2y=0[/tex]
th1: [tex]x=-2y+1[/tex]
=>[tex]\sqrt{y+4}(1+y\sqrt{y+4})=2\sqrt{-y+1}-y<=>y^2+5y=2\sqrt{-y+1}-\sqrt{y+4}<=>y(y+5)=\frac{-4y+4-y-4}{2\sqrt{-y+1}+\sqrt{y+4}}<=>y=0\vee y+5 =\frac{-5}{2\sqrt{-y+1}+\sqrt{y+4}}[/tex]
ta có : [tex]-4 \leqslant y \leqslant 1[/tex]
[tex]=>1\leq 5 \leq 6[/tex]
VP >0 mà VT<0 =>[tex]y+5 =\frac{-5}{2\sqrt{-y+1}+\sqrt{y+4}}[/tex] (vô no)
th 2: 5+x+2y=0
[tex]y^2+5y+\sqrt{y+4}=2\sqrt{-y-5}[/tex]
[tex]y\geq -4[/tex] mà ta lại có : [tex]y\leq -5[/tex] => th này vô no