$x^3 - 3y = y^3 - 3x \\
\Leftrightarrow x^3 - y^3 +3x - 3y = 0 \\
\Leftrightarrow (x-y)(x^2 + xy + y^2) +3(x-y)=0 \\
\Leftrightarrow (x-y)(x^2+xy+y^2+3)=0 \\
\Leftrightarrow
\left[\begin{matrix}
x-y=0 \\ x^2+xy+y^2+3 = 0
\end{matrix}\right. \\
\Leftrightarrow
\left[\begin{matrix}
x=y \\ (x+y)^2-xy+3 = 0
\end{matrix}\right.
$