Bài 3:
Đề: Giải HPT
[tex]\left\{\begin{matrix} x^2-(x-1)\sqrt{y+2}+3x=4 (1)& & \\ \sqrt{x^2+8x+13}+\sqrt{10-y}=3 (2) & & \end{matrix}\right.[/tex]
____________________________
$ĐK:$
[tex]PT(1)\Leftrightarrow x^2-2x+1-(x-1)\sqrt{y+2}+5x-5=0\Leftrightarrow (x-1)^2-(x-1)\sqrt{y+2}+5(x-1)=0\Leftrightarrow (x-1)(x+4-\sqrt{y+2})=0\Rightarrow \begin{bmatrix} x-1=0(*) & & \\ x+4=\sqrt{y+2} (*') & & \end{bmatrix}[/tex]
Giải $(*')$: [tex]x+4=\sqrt{y+2} \Leftrightarrow \left\{\begin{matrix} x\geq -4 & & \\ x^2+8x+16=y+2 & & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} ... & & \\ y=x^2+8x+14 & & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} ... & & \\ \sqrt{10-y}=\sqrt{-x^2-8x-4} & & \end{matrix}\right.[/tex]
Khi đó [tex]PT(2)\Leftrightarrow \sqrt{x^2+8x+13}+\sqrt{-x^2-8x-4}=3[/tex]
Đặt: [tex]\sqrt{x^2+8x+13}=a;\sqrt{-x^2-8x-4}=b(a;b\geq 0)\Rightarrow \left\{\begin{matrix} a+b=3 & & \\ a^2+b^2=9 & & \end{matrix}\right.\Rightarrow a;b\Rightarrow x;y[/tex]