Giải hệ phương trình

  • Thread starter parkminyeonlovenuest@gmail.com
  • Ngày gửi
  • Replies 1
  • Views 414

V

vietdung1998vp

\[\begin{array}{l}
\sqrt {x + y + \sqrt {x - 1} } = \sqrt {x - 1} + x - {y^2}\left( * \right)\\
t = \sqrt {x - 1} \\
\left( * \right) \leftrightarrow \sqrt {{t^2} + t + 1 + y} = t + {t^2} + 1 - {y^2}\left( {**} \right)\\
a = \sqrt {{t^2} + t + 1 + y} \\
\left( {**} \right) \leftrightarrow a = {a^2} - y - {y^2} \leftrightarrow a + y = \left( {a - y} \right)\left( {a + y} \right)\\
\leftrightarrow \left( {a + y} \right)\left( {a - y - 1} \right) = 0\\
\leftrightarrow \left[ \begin{array}{l}
a + y = 0\\
a - y - 1 = 0
\end{array} \right.\\
+ a - y - 1 = 0 \to {t^2} + t + 1 + y = {y^2} + 2y + 1 \leftrightarrow {t^2} - {y^2} + t - y = 0\\
\leftrightarrow \left( {t - y} \right)\left( {t + y + 1} \right) = 0\\
\leftrightarrow \left[ \begin{array}{l}
t - y = 0 \to \sqrt {x - 1} = y \leftrightarrow x - 1 = {y^2}\\
t + y + 1 = 0
\end{array} \right.
\end{array}\]
 
Top Bottom