[tex]\left\{ \begin{array}{l} (Cosx)^2+(Cosy)^2=\frac{7}{4} \\ (Sinx)^6+(Siny)^6=\frac{1}{64} \end{array} \right.[/tex]
[TEX]\left{\begin{cos^2x +cos^2y= \frac{7}{4}}\\ {(sin^2x+sin^2y)(sin^4x+sin^4y-2sin^2x.sin^2y ) = \frac{1}{64}}[/TEX]
[TEX]\left{\begin{cos^2x +cos^2y= \frac{7}{4}}\\ {(2-(cos^2x+cos^2y))((sin^2x+sin^2y)^2-3.sin^2x.sin^2y ) = \frac{1}{64}}[/TEX]
[TEX]\left{\begin{cos^2x +cos^2y= \frac{7}{4}}\\ {\frac{1}{4}(\frac{1}{16}-3.(1-cos^2x).(1-cos^2y )) = \frac{1}{64}}[/TEX]
[TEX]\left{\begin{cos^2x +cos^2y= \frac{7}{4}}\\ {(1-cos^2x).(1-cos^2y )= 0}[/TEX]
[TEX]\left{\begin{cos^2x +cos^2y= \frac{7}{4}}\\ {cos^2x= 1}[/TEX]
[TEX]\Rightarrow cos^2y = \frac{3}{4}[/TEX]
[TEX]\left{\begin{cos^2x +cos^2y= \frac{7}{4}}\\ {cos^2y= 1}[/TEX]
[TEX]\Rightarrow cos^2x = \frac{3}{4}[/TEX]
bạn có thể tự giải cụ thể được rồi