a: DK: x,y,z \geq 0
Giả sử[TEX] x \geq y \Rightarrow \sqrt{y+3}\geq \sqrt{z+3}\Rightarrow y \geq z[/TEX]
Vì[TEX] y \geq z \Rightarrow \sqrt{z+3} \geq \sqrt{x+3} \Rightarrow z \geq x.[/TEX]
[TEX] \Rightarrow x \geq y \geq z \geq x\Rightarrow x=y=z.[/TEX]
[TEX]\Rightarrow 2x=\sqrt{x+3} \Leftrightarrow 4x^2=x+3 \Leftrightarrow 4x^2-x+3=0[/TEX]
[TEX]\Leftrightarrow ...[/TEX]
b,
Từ PT2 và PT3 ta có:
[TEX](a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)=14+14=28.[/TEX]
Từ PT 1 [TEX]\Rightarrow (a+b+c)^2=36 [/TEX]
\Rightarrow HPT vô nghiệm
c,
[TEX] HPT \Leftrightarrow \left{\begin{z(xy+1)=yz+1}\\{x(yz+1)=xz+1}\\{y(xz+1)=xy+1}[/TEX]
[TEX]\Rightarrow xyz(xy+1)(yz+1)(zx+1)=(xy+1)(yz+1)(zx+1)[/TEX]
[TEX]\Rightarrow \left{\begin{(xy+1)(yz+1)(zx+1)=0}\\{xyz=1}[/TEX]
TH1: [TEX](xy+1)(yz+1)(zx+1)=0[/TEX]
Nhận thấy với[TEX] xy+1=0 \Rightarrow (xy+1)(yz+1)(zx+1)=0[/TEX]
Thay [TEX]xy+1=0[/TEX] vào hệ phương trình ta có: [TEX]xy+1=yz+1=zx+1=0[/TEX]
[TEX] \Rightarrow xy=yz=zx=-1[/TEX]
[TEX] \Rightarrow (xyz)^2=-1[/TEX] (Loại).
TH2:
[TEX]xyz=1 \Rightarrow \left{\begin{1+z=1+yz}\\{1+x=1+zx}\\{1+y=1+xy[/TEX]
[TEX] \Rightarrow \left{\begin{zx=yzx}\\{xy=zxy}\\{zy=xyz}[/TEX]
[TEX]\Rightarrow \left{\begin{zx=1}\\{xy=1}\\{zy=1}[/TEX]
mà [TEX]xyz=1 \Rightarrow x=y=z=1[/TEX]
dfljkslgjlghmb.f,gmhlkfdylku
etghytukìgứdfghjklửetgỵhkl
qắedfghjkl;'dfghjkl