$\begin{array}{l}
\left\{ \begin{array}{l}
\frac{1}{{\sqrt {{x^2} + 1} }} + \frac{1}{{\sqrt {{y^2} + 1} }} = \frac{2}{{\sqrt {1 + xy} }}\left( 1 \right)\\
\sqrt {xy - 3} + x + y = 5\left( 2 \right)
\end{array} \right.\\
\left( 1 \right) \leftrightarrow \sqrt {{y^2} + 1} \sqrt {1 + xy} + \sqrt {{x^2} + 1} \sqrt {1 + xy} = 2\sqrt {{x^2} + 1} \sqrt {{y^2} + 1} \\
\leftrightarrow \sqrt {{y^2} + 1} \sqrt {1 + xy} - \sqrt {{x^2} + 1} \sqrt {{y^2} + 1} = \sqrt {{x^2} + 1} \sqrt {{y^2} + 1} - \sqrt {{x^2} + 1} \sqrt {1 + xy} \\
\leftrightarrow \sqrt {{y^2} + 1} \left( {\sqrt {1 + xy} - \sqrt {{x^2} + 1} } \right) = \sqrt {{x^2} + 1} \left( {\sqrt {{y^2} + 1} - \sqrt {1 + xy} } \right)\\
\leftrightarrow \frac{{\sqrt {{y^2} + 1} \left( {xy - {x^2}} \right)}}{{\sqrt {1 + xy} + \sqrt {{x^2} + 1} }} = \frac{{\sqrt {{x^2} + 1} \left( {{y^2} - xy} \right)}}{{\sqrt {{y^2} + 1} + \sqrt {1 + xy} }}\\
\leftrightarrow x = y
\end{array}$