K
koisiujing


giải hệ pt:
1.
[tex]\left\{ \begin{array}{l} y+z+x=\frac{xyz}{a^2} \\ x+z-y=\frac{xyz}{b^2} \\ x+y-z=\frac{xyz}{c^2} \end{array} \right.[/tex]
2[tex]\left\{ \begin{array}{l} \frac{xy}{x+y}=a \\ \frac{xz}{x+z}=a \\ \frac{yz}{y+z}=a^2 \end{array} \right.[/tex]
1.
[tex]\left\{ \begin{array}{l} y+z+x=\frac{xyz}{a^2} \\ x+z-y=\frac{xyz}{b^2} \\ x+y-z=\frac{xyz}{c^2} \end{array} \right.[/tex]
2[tex]\left\{ \begin{array}{l} \frac{xy}{x+y}=a \\ \frac{xz}{x+z}=a \\ \frac{yz}{y+z}=a^2 \end{array} \right.[/tex]
Last edited by a moderator: