Giải giúp mình bài này nhé mị người

D

dothephong

H

huutho2408

1/ Cho dãy (un) xác định bởi: u1=5 và u(n+1)=(un+4)/5; n thuộc N
a, Chứng minh (un) là dãy giảm.
b, Chứng minh dãy (vn) với vn=un-2 là cấp số nhân. Tìm số hạng tổng quát vn suy ra un.
c, Tính tổng Sn=u1+u2+...+un theo n.

tớ thử làm nhé
a. Chứng minh quy nạp [tex]U_n[/tex]>1 (1)
ta có [tex]U_1[/tex]=5>1
[tex]U_2[/tex]=9/5>1

giả sử (1) đúng khi n=k tức là[tex]U_k[/tex] >1
ta cm [tex]U_{k+1}[/tex]>1
thật vậy [tex]U_{k+1}[/tex]=([tex]U_k[/tex]+4)/5>1

nên xét hiệu thì U(n+1)<U(n)

vậy dãy giảm
b.hình như bạn ghi đề sai vì

từ phân tích thì [tex]U_{n+1}[/tex] -1 = [tex]\frac{U_n-1}{5}[/tex]

đặt V(n)=U(n) -1
thì dãy có dạng [tex]V_{n+1}[/tex] = [tex]\frac{V_n}{5}[/tex]

[tex]\frac{V_{n+1}}{V_n}[/tex]=1/5 không đổi

nên V(n) là 1 csn có q=1/5 và V(1)=4
[tex]V_n[/tex]= 4 * [tex](\frac{1}{5}) ^{n-1}[/tex]
nên [tex]U_n[/tex]= [tex]V_n[/tex] +1= 4 * [tex](\frac{1}{5}) ^{n-1}[/tex] +1
 
Last edited by a moderator:
D

dothephong

Xin lỗi, mình nhầm đề, mọi người giải lại giúp mình được ko, đang cần gấp

1/ Cho dãy (un) xác định bởi: u1=5 và u(n+1)=(un+4)/3; n thuộc N
a, Chứng minh (un) là dãy giảm.
b, Chứng minh dãy (vn) với vn=un-2 là cấp số nhân. Tìm số hạng tổng quát vn suy ra un.
c, Tính tổng Sn=u1+u2+...+un theo n.

Với lại câu c, đề cho (un) là dãy số, chứ ko phải cấp số cộng nên mình nghĩ ko áp dụng được công thức đó.
 
Last edited by a moderator:
Top Bottom