[tex]\int\limits_{0}^{\large\Pi/2}\frac{cos2xdx}{1+sin^2x}[/tex]
I=[TEX]\int\limits_{0}^{\large\Pi/2}\frac{2cos2xdx}{3-cos2x}[/TEX]
I=[TEX]\int\limits_{0}^{\large\Pi/4}\frac{2cos2xdx}{3-cos2x}+\int\limits_{\large\Pi/4}^{\large\Pi/2}\frac{2cos2xdx}{3-cos2x}[/TEX]
I= I1+ I2
tính I1
đặt t= tanx <=> dt=(tan^2x+1)dx<=> dt/(t^2+1)=dx
cos2x= (1-t^2)/(t^2+1)
khi đó I1=[TEX]\int\limits_{0}^{1}2\frac{(1-t^2)/(t^2+1)dt}{(t^2+1)(3+(t^2-1)/(t^2+1))}[/TEX]
I1=[TEX]\int\limits_{0}^{1}2\frac{(1-t^2)dt}{(t^2+1)(2t^2+1)}[/TEX]
I1=[TEX]\int\limits_{0}^{1}\frac{6dt}{2t^2+1}-\int\limits_{0}^{1}\frac{4dt}{t^2+1}[/TEX]
I1=6arctant [TEX]\sqrt{2}[/TEX] - 4arctant ( thay cận)
còn I2 thì đặt cotx=t
rồi làm tương tự
>-
>-
>-
>-
>-