4cosx - 2cos2x - cos4x = 1 <=> 4cosx - 2cos2x - cos4x = [tex]\ sin2x^2 + {cos2x^2}[/tex]
<=> 4cosx - 2cos2x - [tex]\ cos2x^2 + {sin2x^2}[/tex] = [tex]\ sin2x^2 + {cos2x^2}[/tex] <=> 4cosx - 2cos2x - [tex]\ 2cos2x^2 [/tex] = 0 <=> 4cosx - 2cos2x( 1 + cox2x ) = 0 <=> 4cosx - 2cos2x( 1+ [tex]\ 2cosx^2 [/tex]- 1 ) = 0 <=> 4cosx - 2cos2x[tex]\2cosx^2 [/tex] = 0 <=> 4cosx( 1 - cosxcos2x ) = 0
cosx = 0 _______<=> x = pi/2 + k2pi_________ <=> x = pi/2 + k2pi
cosxcos2x= 1 ______ [tex]\ 2cosx^3 [/tex]- cosx = 1__________ x = k2pi

>-