[TEX]\begin{array}{l}{2^{3x}} - {6.2^x} - \frac{1}{{{2^{3x - 3}}}} + \frac{{12}}{{{2^x}}} = 1 \\ x \in R \\ t = {2^x}(t > 0) \\ {t^3} - 6t - \frac{8}{{{t^3}}} + \frac{{12}}{t} = 1 \Leftrightarrow {t^6} - 6{t^4} - 8 + 12{t^2} = {t^3} \Leftrightarrow {t^6} - 6{t^4} - {t^3} + 12{t^2} - 8 = 0 \\ \Leftrightarrow (t + 1)(t - 2)({t^4} + {t^3} - 3{t^2} - 2t + 4) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 2 \\ {t^4} + {t^3} - 3{t^2} - 2t + 4 = 0 \\ \end{array} \right. \\ \end{array}\][/TEX]
[TEX]\left\{ \begin{array}{l}{t^4} + \frac{9}{4} - 3{t^2} = {({t^2} - \frac{3}{2})^2} \ge 0 \\ {t^3} + \frac{7}{8} + \frac{7}{8} \ge 3\sqrt[3]{{\frac{{49{t^3}}}{{64}}}} > 2t > 0 \\ \end{array} \right.[/TEX]
[TEX] \Rightarrow {t^4} + {t^3} - 3{t^2} - 2t + 4 = {t^4} + \frac{9}{4} - 3{t^2} + {t^3} + \frac{7}{8} + \frac{7}{8} > 0[/TEX]
[TEX]t = 2 \Leftrightarrow {2^x} = 2 \Leftrightarrow x = 1[/TEX]
Giải chi tiết cho bạn nhé