giai dum bai gioi han

N

ngomaithuy93

[tex] L=\lim_{x\to 1} \frac{6-\sqrt{x+8}\sqrt[3]{5x+3}}{x^2-1}[/tex]
Dựa vào k/n đạo hàm:
[TEX] f'(x_0)=\lim_{x \to x_0}\frac{f(x)-f(x_0)}{x-x_0}[/TEX]
[TEX]L=\frac{\lim_{x \to1}\frac{6-\sqrt{x+8}.\sqrt[3]{5x+3}}{x-1}}{2}[/TEX]
[TEX]f(x)=6-\sqrt{x+8}.\sqrt[3]{5x+3}[/TEX]
[TEX]\Rightarrow f'(x)=\frac{-\sqrt[3]{5x+3}}{2\sqrt{x+8}}-\frac{5\sqrt{x+8}}{3\sqrt[3]{(5x+3)^2}}[/TEX]

[TEX] L_1=\lim_{x \to1}\frac{6-\sqrt{x+8}.\sqrt[3]{5x+3}}{x-1}=f'(1)=\frac{-19}{12}[/TEX]

[TEX] \Rightarrow L=\frac{-19}{24}[/TEX]
 
T

tuyn

[tex] \lim_{x\to 1} \frac{6-\sqrt{x+8}\sqrt[3]{5x+3}}{x^2-1}[/tex]
[TEX]\frac{6-\sqrt{x+8}.\sqrt[3]{5x+3}}{x^2-1}=\frac{(6-2\sqrt{x+8})+(2\sqrt{x+8}-\sqrt{x+8}.\sqrt[3]{5x+3})}{x^2-1}=\frac{6-2\sqrt{x+8}}{x^2-1}+\frac{\sqrt{x+8}(2-\sqrt[3]{5x+3})}{x^2-1}[/TEX]
Đưa về 2 giới hạn rồi nhân liên hợp khử mất nhân tử [TEX]x-1[/TEX]
 
Top Bottom