Giải BPT

T

tuyn

1. Cho a,b,c là 3 số thực dương. Chứng minh rằng.
[tex]\frac{2a^3}{a^6+bc} +\frac{2b^3}{b^6+ca} + \frac{2c^3}{c^6+ab} \le \ \frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab} [/tex]
Áp dụng BĐT Cauchy:
[TEX]a^6+bc \geq 2a^3\sqrt{bc}[/TEX]
[TEX]b^6+ac \geq 2b^3\sqrt{ca}[/TEX]
[TEX]c^6+ab \geq 2c^3\sqrt{ab}[/TEX]
[TEX]\Rightarrow VT \leq \frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}+\frac{1}{\sqrt{ab}}(1)[/TEX]
Mà:
[TEX]\frac{a}{bc}+\frac{b}{ca} \geq \frac{2}{c}[/TEX]
[TEX]\frac{b}{ca}+\frac{c}{ab} \geq \frac{2}{a}[/TEX]
[TEX]\frac{c}{ab}+\frac{a}{bc} \geq \frac{2}{b}[/TEX]
[TEX]\Rightarrow VP \geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}(2)[/TEX]
Mặt khác:
[TEX]\frac{1}{a}+\frac{1}{b} \geq \frac{2}{\sqrt{ab}}[/TEX]
[TEX]\frac{1}{b}+\frac{1}{c} \geq \frac{2}{\sqrt{bc}}[/TEX]
[TEX]\frac{1}{c}+\frac{1}{a} \geq \frac{2}{\sqrt{ca}}[/TEX]
[TEX]\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}(3)[/TEX]
Từ (1),(2),(3) ta có ĐPCM
 
Top Bottom