Gía trị lớn nhất nhỏ nhất của hàm số lượng giác

T

toanle1234

C

conga222222

$\eqalign{
& y = {{3\sin x} \over {\cos x + 2}} + 1 \cr
& t = \cos x + 2\;\left( {1 \le t \le 3} \right) \cr
& \to \left| {{{\sin x} \over {\cos x + 2}}} \right| = {{\sqrt {1 - {{\left( {t - 2} \right)}^2}} } \over t} = \sqrt {{{ - {t^2} + 4t - 3} \over {{t^2}}}} = \sqrt {{4 \over t} - {3 \over {{t^2}}} - 1} \cr
& xet\;f\left( t \right) = {4 \over t} - {3 \over {{t^2}}} \cr
& {f^/}\left( t \right) = - {4 \over {{t^2}}} + {6 \over {{t^3}}} \cr
& {f^/}\left( t \right) = 0 \leftrightarrow {1 \over {{t^3}}}\left( { - 4t + 6} \right) = 0 \leftrightarrow t = 1.5 \cr
& f\left( 1 \right) = 1 \cr
& f\left( 3 \right) = 1 \cr
& f\left( {1.5} \right) = {4 \over 3} \cr
& \to \max \;f\left( t \right) = {4 \over 3} \cr
& \to \left| {{{\sin x} \over {\cos x + 2}}} \right| = \sqrt {{4 \over t} - {3 \over {{t^2}}} - 1} \le \sqrt {{4 \over 3} - 1} = {1 \over {\sqrt 3 }} \cr
& \to - {1 \over {\sqrt 3 }} \le {{\sin x} \over {\cos x + 2}} \le {1 \over {\sqrt 3 }} \cr
& \to ... \cr
& dau = \leftrightarrow ... \cr} $
 
T

toanle1234

cho em hỏi cách giải giá trị ln nhỏ nhất này ở đâu vậy ạ trong tài liệu của em chưa gặp dạng này
 
C

conga222222

cho em hỏi cách giải giá trị ln nhỏ nhất này ở đâu vậy ạ trong tài liệu của em chưa gặp dạng này

đó là ứng dụng của đạo hàm (học ở lớp 12) nếu e chưa học đạo hàm thì dùng cách cổ điển vậy:

$ - {\left( {{{\sqrt 3 } \over t} - {2 \over {\sqrt 3 }}} \right)^2} + {4 \over 3} \le {4 \over 3}$
 
Top Bottom