a) Chứng minh [TEX]x_0> \sqrt[6]{3}[/TEX]
Ta có: [tex]4=(x^2+x+1)(x^3-x^2-x+2) \leq (\frac{x^3+3}{2})^2 \Rightarrow x^3+3 \geq 4 \Rightarrow x \geq 1 > 0[/tex]
[tex](x^5-x^3+x-2)(x+\frac{1}{x})=0\Rightarrow x^6=2x+\frac{2}{x}-1 \geq 4-1=3 \Rightarrow x \geq \sqrt[6]{3}[/tex]
Vì dấu "=" không xảy ra nên [TEX]x_0> \sqrt[6]{3}[/TEX].
Chứng minh [TEX]x_0< \sqrt[6]{4}=\sqrt[3]{2}[/TEX]
[tex]x^5-x^3+x-2=0\Rightarrow x^5+x=x^3+2 \Rightarrow 2+x^3=x^5+x \geq 2x^3 \Rightarrow x^3 \leq 2 \Rightarrow x \leq \sqrt[3]{2}[/tex]
Vì dấu "=" không xảy ra nên [TEX]x_0 < \sqrt[3]{2}[/TEX]
b) [tex]xyz=ax+by+cz > ax+by \Rightarrow z > \frac{a}{y}+\frac{b}{x}[/tex]
Tương tự cộng vế theo vế ta có: [tex]x+y+z > \frac{a}{y}+\frac{b}{x}+\frac{a}{z}+\frac{c}{x}+\frac{b}{z}+\frac{c}{y}=\frac{a+c}{y}+\frac{b+c}{x}+\frac{a+b}{z}\Rightarrow 2(x+y+z) > \frac{a+c}{y}+y+\frac{b+c}{x}+x+\frac{a+b}{z}+z \geq 2\sqrt{a+b}+2\sqrt{b+c}+2\sqrt{c+a} > 2\sqrt{2(a+b+c)} > 4[/tex]