[tex]1)\left\{\begin{matrix} x^2+3y=9(1)\\y^4+4(2x-3)y^2-48y-48x+155=0 (2) \end{matrix}\right.[/tex]
Từ (1) suy ra [tex]x^2=9-3y[/tex]
[tex](2)\Leftrightarrow y^4+8y^2x-12y^2+16(9-3y)-48x+11=0\\\Leftrightarrow y^4+8y^2x-12y^2+16x^2-48x+11=0\\\Leftrightarrow (y^2+4x)^2-12(y^2+4x)+11=0\\\Leftrightarrow (y^2+4x-11)(y^2+4x-1)=0[/tex]
Th1: [tex]\left\{\begin{matrix} x^2+3y=9\\y^2+4x-11=0 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (11-y^2)^2+48y=144\\4x=11-y^2 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (y^2+2\sqrt{6}y+1-2\sqrt{6})(y^2-2\sqrt{6}+1+2\sqrt{6})=0\\4x=11-y^2 \end{matrix}\right.\Leftrightarrow ...[/tex]
Th2: [tex]\left\{\begin{matrix} x^2+3y=9\\y^2+4x-1=0 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (1-y^2)^2+48y=144\\4x=1-y^2 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (y^2+2y-11)(y^2-2y+13)=0\\ 4x=1-y^2 \end{matrix}\right.\Leftrightarrow ...[/tex]
[tex]2)\left\{\begin{matrix} \sqrt{x}+\sqrt{x+2}+\sqrt{x+4}=\sqrt{y-1}+\sqrt{y-3}+\sqrt{y-5}(1)\\x+y+x^2+y^2=44(2) \end{matrix}\right.[/tex]
[tex](1)\Leftrightarrow \left ( \sqrt{x}-\sqrt{y-5} \right )+\left ( \sqrt{x+2}-\sqrt{y-3} \right )+\left ( \sqrt{x+4}-\sqrt{y-1} \right )=0\\\Leftrightarrow \frac{x-y+5}{ \sqrt{x}+\sqrt{y-5}}+\frac{x-y+5}{\sqrt{x+2}+\sqrt{y-3} }+\frac{x-y+5}{ \sqrt{x+4}+\sqrt{y-1}}=0\\\Leftrightarrow (x-y+5)\left (\frac{1}{ \sqrt{x}+\sqrt{y-5}}+\frac{1}{\sqrt{x+2}+\sqrt{y-3} }+\frac{1}{ \sqrt{x+4}+\sqrt{y-1}} \right )=0\\\Leftrightarrow x-y+5=0[/tex]
....