$\frac{a}{b+c} +\frac{b}{a+c} +\frac{c}{a+b} \geq \frac{3}{2}$ với a,b,c>0

B

braga

$$A=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}$$
$$A+3=\frac{a}{b+c}+1+\frac{b}{a+c}+1+\frac{c}{a+b}+ 1$$
$$=(a+b+c)\left (\frac{1}{b+c}+\frac{1}{a+c} +\frac{1}{a+b} \right )$$
Đặt $b+c=x \ ; \ a+c=y \ ; \ a+b=z (x;y;z>0)$ Ta có:
$$A+3=\frac{1}{2}(x+y+z)\left (\frac{1}{x}+\frac{1}{y} +\frac{1}{z} \right )$$
$$\geq \frac{9}{2}\to A \geq \frac{3}{2}$$
 
Top Bottom