đường thẳng vuông góc với mặt phẳng

B

beconlovethy

[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

cho S.ABCD, đáy hình vuông. có SA vuông góc vs (ABCD)
a) CMR BC vuông góc vs (SAB)
b) CMR BD vuông góc vs (SAC)
c) gọi H là hình chiếu của A lên SB. CMR AH vuông góc vs(SBC)
d) gọi K là hình chiếu của A lên SD. CMR SC vuông góc vs (AHK)
 
H

hothithuyduong

cho S.ABCD, đáy hình vuông. có SA vuông góc vs (ABCD)
a) CMR BC vuông góc vs (SAB)
b) CMR BD vuông góc vs (SAC)
c) gọi H là hình chiếu của A lên SB. CMR AH vuông góc vs(SBC)
d) gọi K là hình chiếu của A lên SD. CMR SC vuông góc vs (AHK)


7cb739a48960863341629e291818905c_42368696.a.bmp

a,[TEX]SA \perp (ABCD) \rightarrow SA \perp BC[/TEX]mà [TEX]ABCD[/TEX] là hình chữ nhật nên [TEX]AB \perp CB[/TEX] do đó [TEX]BC \perp (SAB)[/TEX]

b,Có: [TEX]SA \perp (ABCD) \rightarrow SA \perp BD[/TEX]

[TEX]AC \perp BD[/TEX]

[TEX]\rightarrow BD \perp (SAC)[/TEX]

c, Theo câu a [TEX]BC \perp (SAB) \rightarrow BC \perp AH[/TEX] và [TEX]AH \perp SB[/TEX]

[TEX]\rightarrow AH \perp (SBC)[/TEX]

d, [TEX]SA \perp (ABCD) \rightarrow SA \perp CD[/TEX] và [TEX]CD \perp AD[/TEX]

[TEX]\rightarrow CD \perp (SAD) \rightarrow CD \perp AK[/TEX] mà [TEX]AK \perp SD[/TEX] nên [TEX]AK \perp (SCD)[/TEX]
 
Last edited by a moderator:
C

cobengaytho_lovehy

cách chứng minh

cho đường thẳng d vuông góc vs a
d vuông góc vs b
a cắt b tại A
a,b nằm trong [TEX]\alpha [/TEX]
[TEX]\Rightarrow [/TEX] d vuông góc vs [TEX]\alpha [/TEX]
 
Top Bottom