định lý ta lét

L

lycrubi

Gọi H là trung điểm BC suy ra BH = CH = 30cm

Do tam giác ABC cân tại A nên dễ dàng chứng minh được tam giác BEC = tam giác CDB (cgc)
=> BE = CD
mà AB = AC
nên AE = AD tức là tam giác AED cân tại A

Lại có: áp dụng định lý Pitago vào tam giác vuông AHC
ta tính được AH = 40cm
do đó diện tích tam giác ABC = S(ABC) = 1/2 . AH. BC = 1200
mà S(ABC) = 1/2 . BD. AC suy ra BD = 48cm

Áp dụng Pitago vào tam giác vuông ABD
tính được AD = 14cm

Mặt khác, do AD = AE và AB = AC
nên DE // BC
áp dụng định lý Thales ta được: AD/AC = DE/BC
suy ra DE = 288/5

Đáp số: các cạnh của tam giác AED là AD = AE = 48cm, DE = 288/5 cm
 
Top Bottom