4) cách bấm máy: thay 1 giá trị m bất kì sau đó tính x1 x2 và f(x1) f(x2) thay vào
sau đó tính 4 đáp án
(nếu muốn chắc chắn hơn thì nên thử với 2 giá trị m khác nhau)
Cách tự luận: tính y' tìm điều kiện để có 2 nghiệm PB
ta có: f(x1)-f(x2)=$(x_1-x_2)(x_1^2+x_1x_2+x_2^2)-3m(x_1-x_2)(x_1+x_2)+(m^2-1)(x_1-x_2)$
đa thức trên là đa thức đã phân tích thành nhân tử và nó có nhân tử chung $x_1-x_2$ nên sẽ rút gọn được cho mẫu
phần còn lại: từ y'=0 thế vi-ét vào và tính
5)tìm phần dư của phép chia đa thức $y:y'$ ta được đa thức dư là f(x)
khi đó y=f(x) là phương trình đường thẳng qua 2 cực trị
sau đó áp dụng điều kiện vuông góc: tích 2 hệ số góc 2 đường thẳng y=f(x) và đường thẳng d bằng -1
giải ra thu được m
6) tính đạo hàm y'
tìm đa thức dư khi chia $y:y'$ là f(x)
=>y=f(x) là đường thẳng qua 2 cực trị
$S_{OAB}=\frac{1}{2}.d_{(O;AB)}.AB$
$d_{(O;AB)}$= k/c từ O -> y=f(x) thay vào tính
$AB=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$ lắp vi-ét vào
sau đó thay vào biểu thức diện tích giải phương trình ẩn m => m