vì a, b > 0
Nên ab>0
\Rightarrow ab + a + b < 2ab + a + b
\Rightarrow \frac{ab+a+b}{ab+a+b+1} < \frac{2ab+a+b}{ab+a+b+1} (1)
xét 1 - \frac{ab+a+b}{ab+a+b+1} = \frac{1}{a+b+1}
1 - \frac{a+b}{a+b+1} = \frac{1}{a +b+1}
mà \frac{1}{a+b+1} > \frac{1}{ab+a+b+1}
Nên \frac{a+b}{a+b+1} < \frac{ab+a+b}{ab+a+b+1} (2)
Từ (1) và (2) ta có :
\frac{a+b}{a+b+1} < \frac{2ab+a+b}{ab+a+b+1}
:khi (34)::khi (31):