đề toán học kì II(toán 10)

T

trang_dh

N

nguyenbahiep1

dưới đây là 1 số câu trong đề toán học kì II lớp t kiểm tra các bn tham khảo:
1.cmr:
[TEX]sin^4x+cos^4x=\frac{1}{4}(3+cos4x)[/TEX]

[laTEX]VT = (sin^2x+cos^2x)^2 - 2sin^2x.cos^2x \\ \\ \Leftrightarrow 1 - \frac{sin^22x}{2} \\ \\ \Leftrightarrow 1 - \frac{1-cos4x}{4} = \frac{1}{4}(3+cos4x) \Rightarrow dpcm[/laTEX]
 
V

vy000

Có: $\dfrac a{\sin A} = \dfrac b{\sin B} =\dfrac c{\sin C}=2R$

\Leftrightarrow $\begin{cases} \dfrac1a=\dfrac1{2R\sin A}\\ \dfrac1b=\dfrac1{2R\sin B}\\ \dfrac1c=\dfrac1{2R\sin C} \end{cases}$

Ta có: $\dfrac1a=\dfrac1b+\dfrac1c$

\Leftrightarrow $\dfrac1{2R\sin A}=\dfrac1{2R\sin B}+\dfrac1{2R\sin C}$

\Leftrightarrow $\dfrac1{\sin A}=\dfrac1{\sin B}+\dfrac1{\sin C}$

\Leftrightarrow $\sin B\sin C=\sin A\sin B + \sin A \sin C$

\Leftrightarrow $\sin \dfrac{2\pi}7 \sin \dfrac{4\pi}7 =\sin \dfrac{\pi}7 \sin \dfrac{2\pi}7+\sin \dfrac{\pi}7\sin \dfrac{4\pi}7$

\Leftrightarrow $2\sin \dfrac{2\pi}7 \sin\dfrac{4\pi}7 =\cos \dfrac{\pi}7-\cos \dfrac{3\pi}7+\cos \dfrac{3\pi}7-\cos \dfrac{5\pi}7$

\Leftrightarrow $2\sin \dfrac{2\pi}7 \sin \dfrac{4\pi}7 =\cos \dfrac{\pi}7-\cos \dfrac{5\pi}7$

\Leftrightarrow $2\sin \dfrac{2\pi}7\sin \dfrac{4\pi}7 = 2\sin \dfrac{2\pi}7 \sin \dfrac{3\pi}7$

\Leftrightarrow $\sin \dfrac{4\pi}7=\sin \dfrac{3\pi}7$

Luôn đúng
 
T

trang_dh

c2:
ta có [TEX]\hat{A}+\hat{B}+\hat{C}=180^o[/TEX](tổng 3 góc trong 1 tam giác)

mà [TEX]\hat{B}=2\hat{A}[/TEX],[TEX]\hat{C}=4\hat{A}[/TEX]

\Rightarrow [TEX]\hat{A}+2\hat{A}+\hat{A}=180^o[/TEX]

\Rightarrow [TEX]\hat{A}=\frac{\pi}{7}[/TEX],[TEX]\hat{B}=\frac{2\pi}{7}[/TEX],
[TEX]\hat{C}=\frac{4\pi}{7}[/TEX]
Theo định lí hàm số sin ta có:
[TEX]\frac{a}{sin A}=\frac{b}{sin B}=\frac{c}{sin C}=2R[/TEX]
\Rightarrow
[TEX]a=2R.sin.\frac{\pi}{7}[/TEX]

[TEX]b=2R.sin.\frac{2\pi}{7}[/TEX]

[TEX]c=2R.sin.\frac{4\pi}{7}[/TEX]

\Rightarrow

[TEX]\frac{1}{b}+\frac{1}{c}=\frac{1}{2R}.(\frac{1}{sin.\frac{2\pi}{7}}+\frac{1}{sin.\frac{4\pi}{7}})[/TEX]

[TEX]=\frac{1}{2R}.\frac{sin.\frac{4\pi}{7}+sin.\frac{2\pi}{7}}{sin.\frac{4\pi}{7}sin.\frac{2\pi}{7[/TEX]

[TEX]=\frac{1}{2R}.\frac{2.sin.\frac{3\pi}{7}.cos.\frac{2\pi}{7}}{2.sin.\frac{\pi}{7}.cos.\frac{\pi}{7}.sin\frac{4\pi}{7}}[/TEX]

[TEX]=\frac{1}{2R}.\frac{1}{sin.\frac{\pi}{7}[/TEX]
[TEX]=\frac{1}{a}[/TEX]
 
Top Bottom