Giải câu 5 trước nha:
Đặt [tex]t=a^2+b^2+c^2[/tex] thì [tex]t\geq 3[/tex]
Ta có: [tex]a^4+b^2\geq 2a^2b;b^4+c^2\geq 2b^2c;c^4+a^2\geq 2c^2a;a^2b^2+a^2\geq 2a^2b;b^2c^2+b^2\geq 2b^2c;c^2a^2+c^2\geq 2c^2a[/tex]
[tex]\Rightarrow (a^2+b^2+c^2)+(a^4+b^4+c^4)+2(a^2b^2+b^2c^2+c^2a^2)+2(a^2+b^2+c^2)\geq 6(a^2b+b^2c+c^2a)[/tex]
[tex]\Rightarrow (a^2+b^2+c^2)^2+3(a^2+b^2+c^2)\geq 6(a^2b+b^2c+c^2a)\Leftrightarrow (a^2+b^2+c^2)^2+(a^2+b^2+c^2)(a^2+b^2+c^2)\geq 6(a^2b+b^2c+c^2a)\Leftrightarrow 2(a^2+b^2+c^2)^2\geq 6(a^2b+b^2c+c^2a)\Leftrightarrow a^2b+b^2c+c^2a\leq \frac{(a^2+b^2+c^2)^2}{3} \Rightarrow \frac{ab+bc+ca}{a^2b+b^2c+c^2a}\geq \frac{3(ab+bc+ca)}{(a^2+b^2+c^2)^2}[/tex]
Lại có: [tex]2ab+bc+ca=(a+b+c)^2-(a^2+b^2+c^2)[/tex]
[tex]\Rightarrow ab+bc+ca\geq \frac{9-t}{2}[/tex]
Ta có: [tex]P\geq t+\frac{\frac{(9-t)}{2}}{\frac{t^2}{3}}=t+\frac{3(9-t)}{2t^2}=\frac{2t^3-3t+27}{2t^2}[/tex]
Xét [tex]P-4\geq \frac{2t^3-3t+27}{2t^2}-4=\frac{2t^3-8t^2-3t+27}{2t^2}=\frac{(t-3)(2t^2-2t-9)}{2t^2}[/tex]
Vì [tex]t\geq 3[/tex] nên [tex](t-3)(2t^2-2t-9)\geq 0[/tex]
[tex]\Rightarrow P-4\geq 0 hay P\geq 4[/tex]
Dấu "=" xảy ra <=> a=b=c