Đề thi Olympic Hà Nội mở rộng 2010

T

trydan

[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

JUNIOR SECTION
Sunday, 28 March 2010

PART I:
Question 1: Compare the numbers:
gif.latex

and
gif.latex

A.
gif.latex

B.
gif.latex

C.
gif.latex

Explain.

Question 2: The number of integer n from the set
gif.latex
such that
gif.latex
is divisible by 7, is
A. 0
B. 1
C. 2
D. 3
E. Non of the above
Explain.

Question 3: The last 5 digits of the number
gif.latex
are
A. 65625
B. 45625
C. 25625
D. 15625
E. Non of the above.
Explain

Question 4: How many real numbers
gif.latex
such that the corresponding number
gif.latex
is an integer.
A. 0
B. 1
C. 8
D. 9
E. Non of the above
Explain.

Question 5: Each box in 2 . 2 table can be colored black or white. How many different colorings of the table are there?
A. 4
B. 8
C. 16
D. 32
E. Non of the above
Explain

Question 6: The greatest integer less than
gif.latex
are
A. 721
B. 722
C. 723
D. 724
E. Non of the above.
Explain

__________________________________________________________

PART II:
Question 7: Determine all positive integer a such that the equation
gif.latex

has two prime roots, i.e. both roots are prime numbers.

Question 8: If n and
gif.latex
are both perfect squares, find n.

Question 9: Let be given a triangle ABC and points A, M, N belong to BC, AB, AC, respestively. Suppose that MD is parallel to AC and ND is parallel to AB. If
gif.latex
compute
gif.latex


Question 10: Find the maximum value of
gif.latex
 
Last edited by a moderator:
Top Bottom