$\Leftrightarrow \frac{{\left( {y + z} \right)}}{{yz(4 - yz)}} + \frac{{\left( {z + x} \right)}}{{zx(4 - zx)}} + \frac{{\left( {x + y} \right)}}{{xy(4 - xy)}} \ge 2$
Lại có
$\frac{x+y}{xy(4-xy)} \ge \frac{2}{9}(\frac{1}{x}+\frac{1}{y})+\frac{x+y}{9}$
$
\Rightarrow \sum \frac{x+y}{xy(4-xy)} \ge \sum \frac{4}{9}\sum (\frac{1}{ x})+\frac{1}{9} (\sum x) \ge 2$