Toán 11 dãy số

teemoe12

Học sinh chăm học
Thành viên
16 Tháng một 2018
321
88
71
Bắc Ninh
thcs đại phúc
[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

Cho dãy số (un) xác định bởi u1=2 và un=3un-1+2n+3 với mọi n>=2. tìm un
Cho dãy số (un) xác định bởi u1=1 và un=3un-1+10 với mọi n>=2. tìm u9
Cho dãy số (un) xác định bởi u1=4 và un=4un-1-4un-2 với mọi n>=2. tìm un
 
  • Like
Reactions: kido2006

Ngoc Anhs

Cựu TMod Toán
Thành viên
4 Tháng năm 2019
5,482
3,916
646
21
Ha Noi
Hà Nam
trường thpt b bình lục
Cho dãy số (un) xác định bởi u1=2 và un=3un-1+2n+3 với mọi n>=2. tìm un
Cho dãy số (un) xác định bởi u1=1 và un=3un-1+10 với mọi n>=2. tìm u9
Cho dãy số (un) xác định bởi u1=4 và un=4un-1-4un-2 với mọi n>=2. tìm un
a) Đặt [tex]u_n=v_n-n[/tex]
Thay vào công thức truy hồi của $(u_n)$ ta được:
[tex]v_n-n=3\left [ v_{n-1}-(n-1) \right ]+2(n-1)+3 \\ \Leftrightarrow v_n=3v_{n-1}+4[/tex]
Vậy $(v_n)$ được xác định bởi: [tex]\left\{\begin{matrix} v_1=u_1+1\\ v_{n+1}=3v_n+4 \end{matrix}\right.[/tex]
Đặt [tex]v_n=q_n-2[/tex]
Làm tương tự ta thu được: [tex]q_n=5.3^{n-1}[/tex]
[tex]\Rightarrow v_n=5.3^{n-1}-2 \\ \Rightarrow u_n=5.3^{n-1}-2-n[/tex]
Còn lại tương tự nhé :D
 
  • Like
Reactions: Hưng Dragon Ball

System32

Học sinh chăm học
Thành viên
25 Tháng chín 2018
343
348
76
Hà Nội
THPT Marie Curie
a) Đặt [tex]u_n=v_n-n[/tex]
Thay vào công thức truy hồi của $(u_n)$ ta được:
[tex]v_n-n=3\left [ v_{n-1}-(n-1) \right ]+2(n-1)+3 \\ \Leftrightarrow v_n=3v_{n-1}+4[/tex]
Vậy $(v_n)$ được xác định bởi: [tex]\left\{\begin{matrix} v_1=u_1+1\\ v_{n+1}=3v_n+4 \end{matrix}\right.[/tex]
Đặt [tex]v_n=q_n-2[/tex]
Làm tương tự ta thu được: [tex]q_n=5.3^{n-1}[/tex]
[tex]\Rightarrow v_n=5.3^{n-1}-2 \\ \Rightarrow u_n=5.3^{n-1}-2-n[/tex]
Còn lại tương tự nhé :D
Hình như công thức của [tex]u_n[/tex] chưa đúng vì như thế thì [tex]u_2 = 11[/tex] trong khi nếu theo đề bài thì [tex]u_2 = 13[/tex]
Theo mình nghĩ thì [tex]u_n=2.3^{n}-(n+3)[/tex]
 
  • Like
Reactions: Ngoc Anhs

Ngoc Anhs

Cựu TMod Toán
Thành viên
4 Tháng năm 2019
5,482
3,916
646
21
Ha Noi
Hà Nam
trường thpt b bình lục
Hình như công thức của [tex]u_n[/tex] chưa đúng vì như thế thì [tex]u_2 = 11[/tex] trong khi nếu theo đề bài thì [tex]u_2 = 13[/tex]
Theo mình nghĩ thì [tex]u_n=2.3^{n}-(n+3)[/tex]
Sorry bạn :D
Mình quên điều kiện của $n$
[tex]u_n=3u_{n-1}+2(n-1)+5[/tex]
Đặt [tex]u_{n-1}=v_{n-1}-(n-1)[/tex]
Thay vào công thức truy hồi của $u_n$ ta được:
[tex]v_n-n=3\left [ v_{n-1}-(n-1) \right ]+2(n-1)+5 \\ \Leftrightarrow v_n=3v_{n-1}+6[/tex]
Vậy $v_n$ được xác định bởi: [tex]\left\{\begin{matrix} v_1=u_1+(2-1)=3\\ v_n=3v_{n-1}+6 \end{matrix}\right.[/tex]
Đặt [tex]v_{n-1}=q_{n-1}-3[/tex]
Tương tự tìm được : [tex]q_{n-1}=6.3^{n-2}[/tex]
[tex]\Rightarrow v_{n-1}=6.3^{n-2}-3 \\ \Rightarrow u_{n-1}=6.3^{n-2}-3-(n-1) \\ \Rightarrow u_n=6.3^{n-1}-3-n[/tex]
Còn lại tương tự nhé :D
 

teemoe12

Học sinh chăm học
Thành viên
16 Tháng một 2018
321
88
71
Bắc Ninh
thcs đại phúc
Sorry bạn :D
Mình quên điều kiện của $n$
[tex]u_n=3u_{n-1}+2(n-1)+5[/tex]
Đặt [tex]u_{n-1}=v_{n-1}-(n-1)[/tex]
Thay vào công thức truy hồi của $u_n$ ta được:
[tex]v_n-n=3\left [ v_{n-1}-(n-1) \right ]+2(n-1)+5 \\ \Leftrightarrow v_n=3v_{n-1}+6[/tex]
Vậy $v_n$ được xác định bởi: [tex]\left\{\begin{matrix} v_1=u_1+(2-1)=3\\ v_n=3v_{n-1}+6 \end{matrix}\right.[/tex]
Đặt [tex]v_{n-1}=q_{n-1}-3[/tex]
Tương tự tìm được : [tex]q_{n-1}=6.3^{n-2}[/tex]
[tex]\Rightarrow v_{n-1}=6.3^{n-2}-3 \\ \Rightarrow u_{n-1}=6.3^{n-2}-3-(n-1) \\ \Rightarrow u_n=6.3^{n-1}-3-n[/tex]
Còn lại tương tự nhé :D
thử làm hộ e câu b đc ko ạ?
 
  • Like
Reactions: kido2006

Ngoc Anhs

Cựu TMod Toán
Thành viên
4 Tháng năm 2019
5,482
3,916
646
21
Ha Noi
Hà Nam
trường thpt b bình lục
thử làm hộ e câu b đc ko ạ?
Đặt [tex]u_{n-1}=v_{n-1}-5[/tex]
Thay vào công thức truy hồi của$u_n$ ta được:
[tex]v_n-5=3\left ( v_{n-1}-5 \right )+10 \\ \Leftrightarrow v_n=3v_{n-1}[/tex]
Mà [tex]v_1=u_1+5=6 \\ \Rightarrow v_{n-1}=6.3^{n-2} \\ \Rightarrow u_{n-1}=6.3^{n-2}-5 \\ \Rightarrow u_n=6.3^{n-1}-5[/tex]
Đến đây thay số là xong nhé :D
 
Top Bottom