Ta có
$\dfrac{{5x - 3}}{{{x^2} - 3x + 2}} = \dfrac{{ - 2}}{{x - 1}} + \dfrac{7}{{x - 2}}\\
{\left( {\dfrac{{ - 2}}{{x - 1}}} \right)^\prime } = - 2.( - 1).\dfrac{1}{{{{\left( {x - 1} \right)}^2}}};{\left( {\dfrac{{ - 2}}{{x - 1}}} \right)^{\prime \prime }} = - 2{\left( { - 1} \right)^2}\dfrac{{2!}}{{{{\left( {x - 1} \right)}^3}}}\\
= > {\left( {\dfrac{{ - 2}}{{x - 1}}} \right)^{(n)}} = - 2{\left( { - 1} \right)^n}\dfrac{{n!}}{{{{\left( {x - 1} \right)}^{n + 1}}}}$
tương tự ta có
${\left( {\dfrac{7}{{x - 2}}} \right)^{(n)}} = 7.{\left( { - 1} \right)^n}\dfrac{{n!}}{{{{\left( {x - 2} \right)}^{n + 1}}}}\\
= > {\left( {\dfrac{{5x - 3}}{{{x^2} - 3x + 2}}} \right)^{(n)}} = - 2{\left( { - 1} \right)^n}\dfrac{{n!}}{{{{\left( {x - 1} \right)}^{n + 1}}}} + 7.{\left( { - 1} \right)^n}\dfrac{{n!}}{{{{\left( {x - 2} \right)}^{n + 1}}}}
$