a.
[tex]A=(\sqrt{x-\sqrt{18}}-\sqrt{x+\sqrt{18}})\sqrt{x+\sqrt{x^2-18}}\\\rightarrow \sqrt{2}A=(\sqrt{x-\sqrt{18}}-\sqrt{x+\sqrt{18}})\sqrt{2x+2\sqrt{x^2-18}}\\\rightarrow \sqrt{2}A=(\sqrt{x-\sqrt{18}}-\sqrt{x+\sqrt{18}})\sqrt{x-\sqrt{18}+2\sqrt{x^2-18}+x+\sqrt{18}}\\\rightarrow \sqrt{2}A=(\sqrt{x-\sqrt{18}}-\sqrt{x+\sqrt{18}})(\sqrt{x-\sqrt{18}} +\sqrt{x+\sqrt{18}})\\\rightarrow \sqrt{2}A=x-\sqrt{18}-x-\sqrt{18}\\\rightarrow A=-\sqrt{18}[/tex]
b.
[tex]2x=5+\sqrt{13}=>(2x-5)^{2}=13 => x^{2}-5x+3=0\\x^{5}-5x^{4}+4x^{3}-2x^{2}+2023=(x^{2}-5x+3)(x^{3}+x+3)+2014=0+2014=2014[/tex]