Cho[tex]a,b\epsilon Z[/tex] , [tex]a<0 , b>0[/tex] . So sánh hai số hữu tỉ [tex]\frac{a}{b} và \frac{a+2012}{b+2012}[/tex]
Cảm ơn ạ!
Ta có:[tex]\frac{a}{b}=\frac{a(a+2012)}{b(a+2012)}=[tex]\frac{a(a+2012)}{ab+2012b}<\frac{a(a+2012)}{ab+2012a}[/tex] [/tex]
Lại có: [tex]\frac{a+2012}{b+2012}=\frac{a(a+2012)}{a(b+2012)}=\frac{a(a+2012)}{ab+2012a}[/tex]
Do a<0 và b>0 -> a<b-> 2012a<2012b ->ab+2012a<ab+2012b -> [tex]\frac{a(a+2012)}{ab+2012b}<\frac{a(a+2012)}{ab+2012a}[/tex] -> dcpcm nhé
![Big Grin :D :D]()
!