Đại số

Nữ Thần Mặt Trăng

Cựu Mod Toán
Thành viên
TV BQT tích cực 2017
28 Tháng hai 2017
4,472
5,490
779
Hà Nội
THPT Đồng Quan
a) $C=21(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}})^2-6(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}})^2-15\sqrt{15}$
$=\dfrac{21(\sqrt{4+2\sqrt 3}+\sqrt{6-2\sqrt 5})^2}{2}-\dfrac{6(\sqrt{4-2\sqrt{3}}+\sqrt{6+2\sqrt{5}})}{2}-15\sqrt{15}$
$=10,5(\sqrt{3}+1+\sqrt{5}-1)^2-3(\sqrt{3}-1+\sqrt{5}+1)^2-15\sqrt{15}$
$=10,5(\sqrt{3}+\sqrt{5})^2-3(\sqrt{3}+\sqrt{5})^2-15\sqrt{15}$
$=7,5(8+2\sqrt{15})-15\sqrt{15}$
$=60+15\sqrt{15}-15\sqrt{15}$
$=60$
b) $D=\left (\dfrac x{x+3\sqrt x}+\dfrac1{\sqrt x+3} \right): \left( 1-\dfrac 2{\sqrt x}+\dfrac 6{x+3\sqrt x} \right)$
$=\dfrac{x+\sqrt x}{\sqrt x(\sqrt x+3)}: \dfrac{x+3\sqrt x-2\sqrt x-6+6}{\sqrt x(\sqrt x+3)}$
$=\dfrac{x+\sqrt x}{\sqrt x(\sqrt x+3)}.\dfrac{\sqrt x(\sqrt x+3)}{x+\sqrt x}$
$=1$
 
  • Like
Reactions: Ann Lee
Top Bottom