$\left\{\begin{matrix} \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\\ \dfrac{2}{xy}-\dfrac{1}{z^2}=4 \end{matrix}\right.$
xét: $\dfrac{2}{xy}-\dfrac{1}{z^2}=4$
\Leftrightarrow $\dfrac{2}{xy}=\dfrac{1}{z^2}+4 >0$
\Rightarrow$xy>0$
xét: $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2$
\Leftrightarrow $\dfrac{1}{x}+\dfrac{1}{y}=2-\dfrac{1}{z}$
•TH1: Cả 2 vế của pt đều âm
$2-\dfrac{1}{z}<0$ \Rightarrow $z>0$
khi đó $\dfrac{1}{x}+\dfrac{1}{y}=2-\dfrac{1}{z}$
\Leftrightarrow $\dfrac{-1}{x}-\dfrac{1}{y}= \dfrac{1}{z}-2$
\Leftrightarrow $\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{xy}= \dfrac{1}{z^2}-\frac{4}{z}+4$
\Leftrightarrow $\dfrac{1}{x^2}+\dfrac{1}{y^2}=-\dfrac{4}{z} (vl)$
• TH2: Cả 2 vế của pt đều dương
$\dfrac{1}{x}+\dfrac{1}{y} > 0$ \Leftrightarrow $\dfrac{x+y}{xy} >0$ \Leftrightarrow $x+y>0 (vì xy>0)$ \Rightarrow $x;y>0$
khi đó $\dfrac{1}{x}+\dfrac{1}{y} \ge \dfrac{2}{\sqrt{xy}}$
\Leftrightarrow $(\dfrac{1}{x}+\dfrac{1}{y})^2 \ge \dfrac{4}{xy}$ (bình phương 2 vế ko âm)
\Leftrightarrow $(2-\dfrac{1}{z})^2 \ge 2.(\dfrac{1}{z^2}+4)$
\Leftrightarrow $\dfrac{1}{z^2}-\dfrac{4}{z}+4 \ge \dfrac{2}{z^2}+8$
\Leftrightarrow $\dfrac{1}{z^2}+\dfrac{4}{z}+4 \le 0$
\Leftrightarrow $(\dfrac{1}{z}+2)^2 \le 0$
\Leftrightarrow $\dfrac{1}{z}+2=0$
\Leftrightarrow $z=\dfrac{-1}{2}$
\Leftrightarrow $x=y=\dfrac{1}{2}$