Đại số 8

S

shyhaeky_1111

1a, Tim so du cua phep chia 2005^2005 cho 11
b, tim nghiem nguyen duong cua ptrinh
[TEX]2x^3+xy-7=0[/TEX]
2Cho a,b,c>0. CMR
[TEX]\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}\frac{c^3+a^3}{2ca}\geqa+b+c[/TEX]
Làm bài 1 trước:
[TEX]2005 \equiv 3(mod 11) [/TEX]
[TEX]2005^5 \equiv 3^5 \equiv 1(mod 11)[/TEX]
[TEX]2005^{2005}=(2005^5)^{401} \equiv 1^{401}(mod 11)=1[/TEX]
Vậy số dư của [TEX]2005^{2005}[/TEX] cho 11 là 1
 
S

shyhaeky_1111

1a, Tim so du cua phep chia 2005^2005 cho 11
b, tim nghiem nguyen duong cua ptrinh
[TEX]2x^3+xy-7=0[/TEX]
2Cho a,b,c>0. CMR
[TEX]\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}\frac{c^3+a^3}{2ca}\geqa+b+c[/TEX]
b.[TEX]2x^3+xy-7=0[/TEX]
\Leftrightarrow[TEX]x(2x^2+y)=7[/TEX]
[TEX]\left{\begin {x=-1}\\{2x^2+y=-7\Leftrightarrow\left{\begin {x=-1}\\{y=-9}[/TEX]
hoặc [TEX]\left{\begin {x=1}\\{2x^2+y=7\Leftrightarrow\left{\begin {x=1}\\{2x^2+y=5}[/TEX]
 
T

tuananh8

2Cho a,b,c>0. CMR
[TEX]\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}\frac{c^3+a^3}{2ca}\geqa+b+c[/TEX]
Áp dụng BĐT [TEX]x^3+y^3 \geq xy(x+y)[/TEX] ta có:

[TEX]\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+ \frac{c^3+a^3}{2ca} \geq \frac{ab(a+b)}{2ab}+\frac{bc(b+c)}{2bc}\frac{ca(c+a)}{2ca}=\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}=a+b+c[/TEX] đpcm.
 
Top Bottom