Bài 1:
Ta có $\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0 \to \dfrac{bc}{abc}+\dfrac{ac}{abc}+\dfrac{ab}{abc}=0 \to \dfrac{ab+ac+bc}{abc}=0 \to ab+ac+bc=0$
$\to ab= -ac-bc; \ ac= -ab-bc ; \ bc = -ab-ac$
Thay vào $\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2} = \dfrac{-ab-ac}{a^2}+\dfrac{ -ab-bc}{b^2}+\dfrac{-ac-bc}{c^2} = -(\dfrac{ab}{a^2}+\dfrac{ac}{a^2}+ \dfrac{ab}{b^2}+ \dfrac{bc}{b^2}+\dfrac{ac}{c^2}+\dfrac{bc}{c^2})$
$= -(\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{a}{b}+\dfrac{c}{b}+\dfrac{a}{c}+ \dfrac{b}{c}) = -[a.(\dfrac{1}{b}+ \dfrac{1}{c})+b(\dfrac{1}{a}+\dfrac{1}{c})+c.( \dfrac{1}{a}+\dfrac{1}{b})]= -(a.\dfrac{-1}{a}+b.\dfrac{-1}{b}+c. \dfrac{-1}{c})$
$= -(-1-1-1)= 3$
Bài 3:
a, $M=\dfrac{2}{x^2-6x+17}= \dfrac{2}{x^2-2.3x+3^2+8}=\dfrac{2}{(x-3)^2+8}$
Ta có $M$ nhận giá trị lớn nhất khi $(x-3)^2+8$ nhận GTNN
Ta có $(x-3)^2 \ge 0 \to (x-3)^2+8 \ge 8$ với mọi x
$Max M= \dfrac{2}{(x-3)^2+8} = \dfrac{1}{4} \leftrightarrow (x-3)^2=0 \to x-3 =0 \to x=3$
Vậy $Max \ M = \dfrac{1}{4} \leftrightarrow x=3$
b, $N=\dfrac{3}{4x-x^2-10} = \dfrac{-3}{-4x+x^2+10} = \dfrac{-3}{-2.2x+x^2+2^2+6} = \dfrac{-3}{(x-2)^2+ 6} $
Ta có $N$ nhận giá trị nhỏ nhất khi $(x-2)^2+ 6$ nhận GTNN
Ta có $(x-2)^2 \ge 0 \to (x-2)^2+ 6 \ge 6$ với mọi x
$Min N= \dfrac{-3}{6} = \dfrac{-1}{2} \leftrightarrow (x-2)^2=0 \to x-2 =0 \to x=2$
Vậy $Min \ N = \dfrac{-1}{2} \leftrightarrow x=2$