[Đại số 7]Cho $a,b,c \in R;a,b,c \not=0;b^2=ac$ CMR $\dfrac{a}{c}=\dfrac{(a+2012b)^2}{(b+2012c)^2}$

T

tuyetmai233

Last edited by a moderator:
H

hiensau99

Bài 1:

Ta có $b^2= ac \to \dfrac{a}{b}= \dfrac{b}{c} =\dfrac{2012b}{2012c} $. Áp dụng t.c của dãy tỉ số bằng nhau:

$ \dfrac{a}{b} =\dfrac{2012b}{2012c} = \dfrac{a+ 2012b}{b+2012c} \to ( \dfrac{a}{b})^2 = (\dfrac{a+ 2012b}{b+2012c})^2 = \dfrac{a}{b}. \dfrac{a}{b} = \dfrac{a}{b}. \dfrac{b}{c}= \dfrac{a}{c}$

Vậy $\dfrac{a}{c}=\dfrac{(a+2012b)^2}{(b+2012c)^2}$ (đpcm)

Bài 2:
Ta có : $$\dfrac{8a+5b}{9a-7b}=\dfrac{8c+5d}{9c-7d} $$

$$\to (8a+5b).(9c-7d)= (9a-7b).(8c+5d)$$

$$ \to 72ac - 56 ad + 45bc - 35bd = 72ac + 45ad - 56bc - 35bc$$

$$ \to 72ac + 45bc - 72ac + 56bc = 45ad + 56ad - 35bc+ 35bd $$

$$ \to 101bc = 101ad $$

$$ \to bc = ad $$ (đpcm)
 
Top Bottom