[Đại Số 10] giúp giải phương trình khó

  • Thread starter nicolas.minhtri99@gmail.com
  • Ngày gửi
  • Replies 5
  • Views 585

N

nicolas.minhtri99@gmail.com

[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.


11083911_365118970357362_5699127763336413503_n.jpg
 
H

hien_vuthithanh

3/

$\sqrt{4x+1}+\sqrt{3x-2}=x^3-2x^2-35x+75$

Đk : $x\ge \dfrac{2}{3}$

$\sqrt{4x+1}+\sqrt{3x-2}=x^3-2x^2-35x+75$

\Leftrightarrow $(\sqrt{4x+1}-3)+(\sqrt{3x-2}-2)=x^3-2x^2-35x+70$

$\leftrightarrow \dfrac{4(x-2)}{\sqrt{4x+1}+3}+\dfrac{3(x-2)}{\sqrt{3x-2}+2}=(x-2)(x^2-35)$

\Leftrightarrow $\begin{bmatrix}
& x=2& \\
& \dfrac{4}{\sqrt{4x+1}+3}+\dfrac{3}{\sqrt{3x-2}+2}=(x^2-35)
&
\end{bmatrix}$

\Leftrightarrow $\begin{bmatrix}
& x=2 & \\
& (\dfrac{4}{\sqrt{4x+1}+3}-\dfrac{1}{2})+(\dfrac{3}{\sqrt{3x-2}+2}-\dfrac{1}{2})=(x^2-36)&
\end{bmatrix}$

\Leftrightarrow $\begin{bmatrix}
& x=2 & \\
& \dfrac{4(6-x)}{2(\sqrt{4x+1}+3)}+\dfrac{3(6-x)}{2(\sqrt{3x-2}+2)}=(6-x)(-x-6) &
\end{bmatrix}$

\Leftrightarrow $\begin{bmatrix}
& x=2 & \\
& x=6 & \\
& \dfrac{4}{2(\sqrt{4x+1}+3)}+\dfrac{3}{2(\sqrt{3x-2}+2)}=-x-6 &
\end{bmatrix}$

( PT $\dfrac{4}{2(\sqrt{4x+1}+3)}+\dfrac{3}{2(\sqrt{3x-2}+2)}=-x-6$vô nghiệm \forall $x\ge \dfrac{2}{3}$

Vậy nghiệm $x=2 ;x=6$
 
Last edited by a moderator:
H

hien_vuthithanh

4/

$\sqrt{x+2}+\sqrt{3-x}=x^4+4x^3-x^2-16x-12$

Đk $x \in [-2;3] $

$\sqrt{x+2}+\sqrt{3-x}=x^4+4x^3-x^2-16x-12$

$\leftrightarrow (\sqrt{x+2}-2)+(\sqrt{3-x}-1)=x^4+4x^3-x^2-16x-9$

$\leftrightarrow \dfrac{x-2}{\sqrt{x+2}+2}-\dfrac{x-2}{ \sqrt{3-x}+1}=(x+1)(x+2)(x+3)(x-2)$

$\leftrightarrow \begin{bmatrix}
& x=2 & \\
& \dfrac{1}{\sqrt{x+2}+2}-\dfrac{1}{ \sqrt{3-x}+1}=(x+1)(x+2)(x+3) &
\end{bmatrix}$

$\leftrightarrow \begin{bmatrix}
& x=2& \\
& (\dfrac{x-2}{\sqrt{x+2}+2}-\dfrac{1}{3})-(\dfrac{x-2}{\sqrt{3-x}+1}-\dfrac{1}{3})=(x+1)(x+2)(x+3) &
\end{bmatrix}$

$\leftrightarrow \begin{bmatrix}
& x=2 & \\
& \dfrac{-x-1}{3(\sqrt{x+2}+2}-\dfrac{x+1}{3(\sqrt{3-x}+1)}=(x+1)(x+2)(x+3) &
\end{bmatrix}$

$\leftrightarrow\begin{bmatrix}
& x=2& \\
& x=-1& \\
& (x+2)(x+3)+\dfrac{1}{3(\sqrt{x+2}+2)}+\dfrac{1}{3( \sqrt{3-x}+1)}=0&
\end{bmatrix}$

PT $(x+2)(x+3)+\dfrac{1}{3(\sqrt{x+2}+2)}+\dfrac{1}{3( \sqrt{3-x}+1)}=0$ vô nghiệm \forall $x \in [-2;3] $

$\rightarrow $ PT có nghiệm $x=-1 ;x=2$
 
H

hien_vuthithanh

$\sqrt{\dfrac{10x+7}{3}}+\sqrt{2x}=2x^2-\dfrac{11x-13}{3}$

Đk : $x\ge 0$

$\sqrt{\dfrac{10x+7}{3}}+\sqrt{2x}=2x^2-\dfrac{11x-13}{3}$

$\leftrightarrow (\sqrt{\dfrac{10x+7}{3}}-3)+(\sqrt{2x}-2)=(2x^2-8)-(\dfrac{11x-13}{3}-3)$

$\leftrightarrow \dfrac{10(x-2)}{3(\sqrt{\dfrac{10x+7}{3}}+3)}+\dfrac{2(x-2)}{\sqrt{2x}+2}=2(x-2)(x+2)-\dfrac{11(x-2))}{3}$

$\leftrightarrow \begin{bmatrix}
& x=2 & \\
& \dfrac{10}{(\sqrt{\dfrac{10x+7}{3}}+3)}+\dfrac{6}{\sqrt{2x}+2}=6x+1 &
\end{bmatrix}$

$\leftrightarrow \begin{bmatrix}
& x=2 & \\
& (\dfrac{10}{\sqrt{\dfrac{10x+7}{3}}+3}-2)+(\dfrac{6}{\sqrt{2x}-2}-2)=6x-3&
\end{bmatrix}$

$\leftrightarrow \begin{bmatrix}
& x=2 & \\
&-10\dfrac{2x-1}{(\sqrt{\dfrac{10x+7}{3}}+3)(2+\sqrt{\dfrac{10x+7}{3}})}-2\dfrac{2x-1}{(\sqrt{2x}+2)(1+\sqrt{2x})}=3(2x-1) &
\end{bmatrix}$

$\leftrightarrow \begin{bmatrix}
& x=2 & \\
& \dfrac{10}{(\sqrt{\dfrac{10x+7}{3}}+3)(2+\sqrt{ \dfrac{10x+7}{3}})}+\dfrac{2}{(\sqrt{2x}+2)(1+ \sqrt{2x})}+3=0&
\end{bmatrix}$

PT $\dfrac{10}{(\sqrt{\dfrac{10x+7}{3}}+3)(2+\sqrt{ \dfrac{10x+7}{3}})}+\dfrac{2}{(\sqrt{2x}+2)(1+ \sqrt{2x})}+3=0$ vô nghiệm \forall $x\ge 0$

$\rightarrow $ PT có nghiệm $x=2;x=\dfrac{1}{2}$
 
Top Bottom