3/
$\sqrt{4x+1}+\sqrt{3x-2}=x^3-2x^2-35x+75$
Đk : $x\ge \dfrac{2}{3}$
$\sqrt{4x+1}+\sqrt{3x-2}=x^3-2x^2-35x+75$
\Leftrightarrow $(\sqrt{4x+1}-3)+(\sqrt{3x-2}-2)=x^3-2x^2-35x+70$
$\leftrightarrow \dfrac{4(x-2)}{\sqrt{4x+1}+3}+\dfrac{3(x-2)}{\sqrt{3x-2}+2}=(x-2)(x^2-35)$
\Leftrightarrow $\begin{bmatrix}
& x=2& \\
& \dfrac{4}{\sqrt{4x+1}+3}+\dfrac{3}{\sqrt{3x-2}+2}=(x^2-35)
&
\end{bmatrix}$
\Leftrightarrow $\begin{bmatrix}
& x=2 & \\
& (\dfrac{4}{\sqrt{4x+1}+3}-\dfrac{1}{2})+(\dfrac{3}{\sqrt{3x-2}+2}-\dfrac{1}{2})=(x^2-36)&
\end{bmatrix}$
\Leftrightarrow $\begin{bmatrix}
& x=2 & \\
& \dfrac{4(6-x)}{2(\sqrt{4x+1}+3)}+\dfrac{3(6-x)}{2(\sqrt{3x-2}+2)}=(6-x)(-x-6) &
\end{bmatrix}$
\Leftrightarrow $\begin{bmatrix}
& x=2 & \\
& x=6 & \\
& \dfrac{4}{2(\sqrt{4x+1}+3)}+\dfrac{3}{2(\sqrt{3x-2}+2)}=-x-6 &
\end{bmatrix}$
( PT $\dfrac{4}{2(\sqrt{4x+1}+3)}+\dfrac{3}{2(\sqrt{3x-2}+2)}=-x-6$vô nghiệm \forall $x\ge \dfrac{2}{3}$
Vậy nghiệm $x=2 ;x=6$
Last edited by a moderator: