[Đại] Chứng minh bất đẳng thức

V

viethoang1999

Do $xyz=1$ nên
Đặt $(x;y;z)=(\dfrac{a}{b};\dfrac{b}{c};\dfrac{c}{a})$
BDT\Leftrightarrow $\sum \dfrac{ab}{a^2+2b^2}\le 1$
Ta có:
$P=\sum \dfrac{ab}{a^2+2b^2}\le \sum \dfrac{ab}{2ab+b^2}=\sum \dfrac{a}{2a+b}$
$=\dfrac{3}{2}-\dfrac{1}{2}\sum \dfrac{b}{2a+b}$
Lại có:
$\dfrac{b}{2a+b}\ge \dfrac{(a+b+c)^2}{(a+b+c)^2}=1$
Vậy $P\le \dfrac{3}{2}-\dfrac{1}{2}=1$


 
Last edited by a moderator:
Top Bottom