[Đại 9] Tìm GTNN của A

H

huynhbachkhoa23

$A=\dfrac{|\sqrt{x^2-4}+2|+|\sqrt{x^2-4}-2|}{2}\ge 2$
Đẳng thức xảy ra khi và chỉ khi $|x|\le 2\sqrt{2}$
 
Last edited by a moderator:
T

transformers123

$A=\sqrt{\dfrac{x^2}{4}+\sqrt{x^2-4}}+\sqrt{\dfrac{x^2}{4}-\sqrt{x^2-4}}$ (tự tìm điều kiện)

$\iff A=\sqrt{\dfrac{x^2-4}{4}+2.\sqrt{\dfrac{x^2-4}{4}}.1+1}+\sqrt{\dfrac{x^2-4}
{4}-2.\sqrt{\dfrac{x^2-4}{4}}.1+1}$

$\iff A=\sqrt{(\dfrac{\sqrt{x^2-4}}{2}+1)^2}+\sqrt{(\dfrac{\sqrt{x^2-4}}{2}-1)^2}$

$\iff A=|\dfrac{\sqrt{x^2-4}}{2}+1|+|\dfrac{\sqrt{x^2-4}}{2}-1|$

$\iff A=|\dfrac{\sqrt{x^2-4}}{2}+1|+|1-\dfrac{\sqrt{x^2-4}}{2}|$

$\iff A \ge |\dfrac{\sqrt{x^2-4}}{2}+1+1-\dfrac{\sqrt{x^2-4}}{2}|$

$\iff A \ge 2$

Dấu "=" xảy ra khi $(\dfrac{\sqrt{x^2-4}}{2}+1)(1-\dfrac{\sqrt{x^2-4}}{2}) \ge 0 \iff -2\sqrt{2} \le x \le 2\sqrt{2}$
 
Top Bottom