[Đại 9]Chứng minh rằng

T

torresss

[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

Bài 1:Cho a,b,c là các số dương.
Chứng minh rằng (ab+bc+ca)2(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a})^2\geq(a+b+c)(1a\dfrac{1}{a}+1b\dfrac{1}{b}+1c\dfrac{1}{c})
bài 2:Cho biểu thức P=a2a^2+b2b^2+c2c^2+d2d^2+ac+bd,trong đó ad-bc=1.Chứng minh rằng :p>3\sqrt{3}
 
H

hien_vuthithanh


bài 2:Cho biểu thức P=a2a^2+b2b^2+c2c^2+d2d^2+ac+bd,trong đó ad-bc=1.Chứng minh rằng :p>3\sqrt{3}

Có :(adbc)2+(ac+bd)2=(a2+b2)(c2+d2) (ad-bc)^2+(ac+bd)^2=(a^2+b^2)(c^2+d^2)

adbc=11+(ac+bd)2=(a2+b2)(c2+d2)2(a2+b2)(c2+d2)ad-bc=1 \rightarrow 1+(ac+bd)^2=(a^2+b^2)(c^2+d^2)\ge 2\sqrt{(a^2+b^2)(c^2+d^2)}

a2+b2+c2+d2+ac+bd2(a2+b2)(c2+d2)+ac+bd\rightarrow a^2+b^2+c^2+d^2+ac+bd \ge 2\sqrt{(a^2+b^2)(c^2+d^2)} +ac+bd

BDT2(a2+b2)(c2+d2)+ac+bd3\rightarrow BDT \leftrightarrow 2\sqrt{(a^2+b^2)(c^2+d^2)}+ac+bd \ge \sqrt{3}

21+(ac+bd)2+ac+bd3\leftrightarrow 2\sqrt{1+(ac+bd)^2}+ac+bd \ge \sqrt{3}

Đặt x=ac+bdp=21+x2+xx=ac+bd \rightarrow p= 2\sqrt{1+x^2}+x

x=x2<21+x2|x| =\sqrt{x^2}< 2\sqrt{1+x^2} ,mà xxp>0|x| \ge -x \rightarrow p >0

p2=4(1+x2)+4x1+x2+x2=(1+x2)+4x1+x2+4x2+3=(1+x2+2x)2+33\rightarrow p^2 =4(1+x^2)+4x\sqrt{1+x^2}+x^2=(1+x^2)+4x\sqrt{1+x^2}+4x^2+3 = (\sqrt{1+x^2}+2x)^2+3 \ge 3

p3S3\rightarrow p \ge \sqrt{3}\rightarrow S \ge \sqrt{3}
 
T

transformers123

Bài 1:

Bắt đầu từ hai bđt sau:

ab+bc+ca3ab.bc.ca3=3\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a} \ge 3\sqrt[3]{\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}} =3

ba+cb+ac3ba.cb.ac3=3\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c} \ge 3\sqrt[3]{\dfrac{b}{a}.\dfrac{c}{b}.\dfrac{a}{c}} =3

Ta có:

(1+1+1)(a2b2+b2c2+c2a2)(ab+bc+ca)2(1+1+1)(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}) \ge (\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a})^2

    a2b2+b2c2+c2a2(ab+bc+ca)23\iff \dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2} \ge \dfrac{(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a})^2}{3}

    a2b2+b2c2+c2a2(ab+bc+ca)2ab+bc+ca\iff \dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2} \ge \dfrac{(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a})^2}{\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}}

    a2b2+b2c2+c2a2ab+bc+ca\iff \dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2} \ge \dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}

Từ những bđt trên, ta có:

a2b2+b2c2+c2a2+ba+cb+acab+bc+ca+3\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}+\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c} \ge \dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+3

    a2b2+b2c2+c2a2+2ba+2cb+2acab+bc+ca+3+ba+cb+ac\iff \dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}+\dfrac{2b}{a}+\dfrac{2c}{b}+\dfrac{2a}{c} \ge \dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+3+\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}

    (ab+bc+ca)2(a+b+c)(1a+bc+ca)\iff (\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a})^2 \ge (a+b+c)(\dfrac{1}{a}+\dfrac{b}{c}+\dfrac{c}{a})
 
H

hien_vuthithanh

Bài 1:Cho a,b,c là các số dương.
Chứng minh rằng (ab+bc+ca)2(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a})^2\geq(a+b+c)(1a\dfrac{1}{a}+1b\dfrac{1}{b}+1c\dfrac{1}{c})

Cách khác :

(ab+bc+ca)2(a+b+c)(1a+1b+1c)(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a})^2\ge(a+b+c)(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c})

a2b2+b2c2+c2a2+2(ac+ba+cb)3+ab+bc+ca+ac+ba+cb\leftrightarrow \dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}+2(\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b})\ge 3+\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}

a2b2+b2c2+c2a2+ac+ba+cb3+ab+bc+ca\leftrightarrow \dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}+\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}\ge 3+\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}

Đặt (ab;bc;ca)=(x;y;z)\bigl(\begin{smallmatrix} & \dfrac{a}{b} ; \dfrac{b}{c} ;\dfrac{c}{a}& \\ \end{smallmatrix}\bigr) =(x;y;z)

BDTx2+y2+z2+1x+1y+1z3+x+y+z\rightarrow BDT \leftrightarrow x^2+y^2+z^2+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge 3+x+y+z

Có : x2+y2+z2(x+y+z)23;1x+1y+1z9x+y+zx^2+y^2+z^2 \ge \dfrac{(x+y+z)^2}{3} ;\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge \dfrac{9}{x+y+z}

Đặt x+y+z=t(t>0) x+y+z=t (t>0)\rightarrow Cần c/m 13t2+9t3+t \dfrac{1}{3}t^2+\dfrac{9}{t}\ge 3+t

t33t29t+270\leftrightarrow t^3-3t^2-9t+27\ge 0

(t+3)(t3)20\leftrightarrow (t+3)(t-3)^2 \ge 0 (ld do t>0)t>0)
 
Top Bottom