[Đại 9] Chứng minh bất đẳng thức

E

eye_smile

Ta có:
$\dfrac{1}{{a^2}}+1$ \geq $\dfrac{2}{a}$
$\dfrac{1}{{b^2}}+1$ \geq $\dfrac{2}{b}$
$\dfrac{1}{{c^2}}+1$ \geq $\dfrac{2}{c}$
\Rightarrow $A=\dfrac{1}{{a^2}}+\dfrac{1}{{b^2}}+\dfrac{1}{{c^2}}$ \geq $2(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c})-3$
Lại có:$2(\dfrac{1}{{a^2}}+\dfrac{1}{{b^2}}+\dfrac{1}{{c^2}})$ \geq $2(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac})$
Cộng theo vế, được
$3A$ \geq $2(\dfrac{1}{a}+\dfrac{1}{c}+\dfrac{1}{b}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac})-3$
Từ $a+b+c+ab+bc+ca=6abc$ \Rightarrow $\dfrac{1}{a}+\dfrac{1}{c}+\dfrac{1}{b}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}=6$
\Rightarrow $3A$ \geq 2.6-3=9
\Leftrightarrow $A$ \geq 3
Dấu "=" xảy ra \Leftrightarrow a=b=c=1
 
Top Bottom