Phân tích đa thức thành nhân tử
Q=[tex]a(b^{3}-c^{3})+b(c^{3}-a^{3})+c(a^{3}-b^{3})[/tex]
[tex]Q=a(b^{3}-c^{3})+b(c^{3}-a^{3})+c(a^{3}-b^{3})=a.(b^{3}-c^{3})+b.[-(b^{3}-c^{3})-(a^{3}-b^{3})]+c.(a^{3}-b^{3})\\\\ =a.(b^{3}-c^{3})-b.(b^{3}-c^{3})-b.(a^{3}-b^{3})+c.(a^{3}-b^{3})\\\\ =(b^{3}-c^{3}).(a-b)-(a^{3}-b^{3}).(b-c)\\\\ =(a-b).(b-c).(b^{2}+bc+c^{2})-(b-c).(a-b).(a^{2}+ab+b^{2})\\\\ =(a-b).(b-c).(b^{2}+bc+c^{2}-a^{2}-ab-b^{2})\\\\ =(a-b).(b-c).[b.(c-a)+(c-a).(c+a)]\\\\ =(a-b).(b-c).(c-a).(b+c+a)[/tex]