đội 1
Ta có:
[TEX]\frac{1}{1+2+3+...+n}=\frac{1}{\frac{n(n+1)}{2}}= \frac{2}{n(n+1)}=2(\frac{1}{n}-\frac{1}{n+1})[/TEX]
Vậy:
[TEX](1-\frac{1}{1+2})+(1-\frac{1}{1+2+3})+...+(1-\frac{1}{1+2+3+...+n})=\frac{671}{2011}[/TEX]
[TEX]\Leftrightarrow (1+1+1+...+1)-(\frac{1}{1+2}+\frac{1}{1+2+3})+...+\frac{1}{1+2+3+...+n})=\frac{671}{2011}[/TEX]
[TEX]\Leftrightarrow n.1-(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1})=\frac{671}{2011}[/TEX]
[TEX]\Leftrightarrow n(1-\frac{1}{n+1})=\frac{671}{2011}[/TEX]
[TEX]\Leftrightarrow \frac{n^2}{n+1}=\frac{671}{2011}[/TEX]
[TEX]\Leftrightarrow 2011n^2-671n-671=0[/TEX]
Giải phương trình là ra n