Đặt
$ D = \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + ... + \frac{1}{3^{99}} \\ 3D = 1 + \frac{1}{3} + \frac{1}{3^2} + ... + \frac{1}{3^{98}} \\ 3D - D = \left ( 1 + \frac{1}{3} + \frac{1}{3^2} + ... + \frac{1}{3^{98}} \right ) - \left ( \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + ... + \frac{1}{3^{99}} \right ) \\ 2D = 1 - \frac{1}{3^{99}}} < 1 \\ \Rightarrow D < \frac{1}{2} $