[Đại 10] Bất đẳng thức Cauchy

L

lp_qt

$\dfrac{x^2}{1+y}+\dfrac{1+y}{4} \ge 2.\sqrt{\dfrac{x^2}{1+y}.\dfrac{1+y}{4}}=x$

$\dfrac{y^2}{1+z}+\dfrac{1+z}{4}\ge 2.\sqrt{\dfrac{y^2}{1+z}.\dfrac{1+z}{4}}=y$

$\dfrac{z^2}{1+x}+\dfrac{1+x}{4} \ge 2.\sqrt{\dfrac{z^2}{1+x}.\dfrac{1+x}{4}}=z$

\Rightarrow $\dfrac{x^2}{1+y}+ \dfrac{1+y}{4}+\dfrac{y^2}{1+z}+\dfrac{1+z}{4} +\dfrac{z^2}{1+x}+\dfrac{1+x}{4} \ge x+y+z$

\Leftrightarrow $\dfrac{x^2}{1+y}+\dfrac{y^2}{1+z} +\dfrac{z^2}{1+x}\ge \dfrac{3}{4}(x+y+z)-\dfrac{3}{4}\ge \dfrac{3}{4}.\sqrt[3]{xyz}-\dfrac{3}{4}=\dfrac{3}{2}$
 
E

eye_smile

Cách khác:

$\dfrac{x^2}{y+1}+\dfrac{y^2}{z+1}+\dfrac{z^2}{x+1} \ge \dfrac{(x+y+z)^2}{x+y+z+3}$

Cần cm:

$\dfrac{(x+y+z)^2}{x+y+z+3} \ge \dfrac{3}{2}$

\Leftrightarrow $2a^2 \ge 3a+9$ với $a=x+y+z$

\Leftrightarrow $(a-3)(2a+3) \ge 0$ (đúng do $a=x+y+z \ge 3\sqrt[3]{xyz}=3$ )

\Rightarrow đpcm

 
Top Bottom