Tìm GTLN của biểu thức $\dfrac{x+4\sqrt[] {x}+1}{x+\sqrt[] {x}+1}$
nene2020 Học sinh mới Thành viên 21 Tháng mười một 2020 3 1 1 19 Nghệ An THCS Võ Thị Sáu 21 Tháng mười một 2020 #1 [TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn. Tìm GTLN của biểu thức $\dfrac{x+4\sqrt[] {x}+1}{x+\sqrt[] {x}+1}$
[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn. Tìm GTLN của biểu thức $\dfrac{x+4\sqrt[] {x}+1}{x+\sqrt[] {x}+1}$
Lee Tuan Canh Học sinh mới Thành viên 15 Tháng ba 2021 29 22 6 19 Hải Dương THPT Thanh Hà 16 Tháng ba 2021 #2 [tex]\frac{x+4\sqrt{x}+1}{x+\sqrt{x}+1}=\frac{x+4\sqrt{x}+1-2x-2\sqrt{x}-2}{x+\sqrt{x}+1}+2=\frac{-(\sqrt{x}-1)^{2}}{x+\sqrt{x}+1}+2\leq 2[/tex] Dấu "=" xảy ra [tex]\Leftrightarrow x=1[/tex] Last edited by a moderator: 17 Tháng ba 2021
[tex]\frac{x+4\sqrt{x}+1}{x+\sqrt{x}+1}=\frac{x+4\sqrt{x}+1-2x-2\sqrt{x}-2}{x+\sqrt{x}+1}+2=\frac{-(\sqrt{x}-1)^{2}}{x+\sqrt{x}+1}+2\leq 2[/tex] Dấu "=" xảy ra [tex]\Leftrightarrow x=1[/tex]