$\dfrac{1}{2}x^2+\dfrac{17-\sqrt{33}}{16}y^2 \ge 2.\sqrt{\dfrac{17-\sqrt{33}}{32}}xy$
$\dfrac{1}{2}x^2+\dfrac{17-\sqrt{33}}{16}z^2 \ge 2.\sqrt{\dfrac{17-\sqrt{33}}{32}}xz$
$\dfrac{-1+\sqrt{33}}{16}y^2+\dfrac{-1+\sqrt{33}}{16}z^2 \ge 2. \dfrac{-1+\sqrt{33}}{16}yz$
\Rightarrow $x^2+y^2+z^2 \ge 4.\dfrac{-1+\sqrt{33}}{16}(xy+xz+2zy)$
\Rightarrow $P \ge \dfrac{-1+\sqrt{33}}{4}$