cực trị.......

V

vansang02121998

$A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}$ ( ĐK: $xy \ne 0$ )

$\Leftrightarrow Ax^2+Axy+Ay^2=x^2-xy+y^2$

$\Leftrightarrow (A-1)x^2+(A+1)xy+(A-1)y^2=0$

Chia cho $y^2 \ne 0$

$\Leftrightarrow (A-1)\dfrac{x^2}{y^2}+(A+1)\dfrac{x}{y}+A-1=0$

Đặt $\dfrac{x}{y}=a$

$\Leftrightarrow (A-1)a^2+(A+1)a+A-1=0$

$\Delta = (A+1)^2-4(A-1)^2$

$=A^2+2A+1-4A^2+8A-4$

$=-3A^2+10A-3 \ge 0$

$\Leftrightarrow \dfrac{1}{3} \le A \le 3$

2 bài sau tương tự
 
Top Bottom