cực trị

T

tuyn

cho x,y \geq 0. Tìm gtnn
[tex]p= x-2\sqrt[]{xy} +3y- 2\sqrt[]{x}+ 2004,5[/tex]
giúp mình nhak các u!

=((=((=((=((=((=((=((=((=((=((=((=((=((=((=((=((=((=((=((
:)|:)|:)|:)|:)|:)|:)|:)|:)|:)|:)|:)|:)|:)|
Ta có: [TEX]p= x-2\sqrt[]{xy} +3y- 2\sqrt[]{x}+ 2004,5=(\frac{x}{3}-2\sqrt{xy}+3y)+(\frac{2x}{3}-2\sqrt{x}+\frac{3}{2})+2003=\frac{1}{3}.(\sqrt{x}-3\sqrt{y})^2+\frac{2}{3}.(\sqrt{x}-\frac{3}{2})^2+2003 \geq 2003 \Rightarrow MinP=2003 \Leftrightarrow \left{\begin{x-3\sqrt{y}=0}\\{\sqrt{x}-\frac{3}{2}=0}[/TEX]
 
Last edited by a moderator:
Top Bottom